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Abstract
For certain types of quantum graphs we show that the random matrix form factor
can be recovered to at least third order in the scaled time τ from periodic-orbit
theory. We consider the contributions from pairs of periodic orbits represented
by diagrams with up to two self-intersections connected by up to four arcs and
explain why all other diagrams are expected to give higher-order corrections
only. For a large family of graphs with ergodic classical dynamics the diagrams
that exist in the absence of time-reversal symmetry sum to zero. The mechanism
for this cancellation is rather general which suggests that it also applies at
higher orders in the expansion. This expectation is in full agreement with
the fact that in this case the linear-τ contribution, the diagonal approximation,
already reproduces the random matrix form factor for τ < 1. For systems
with time-reversal symmetry there are more diagrams which contribute at
third order. We sum these contributions for quantum graphs with uniformly
hyperbolic dynamics, obtaining +2τ 3, in agreement with random matrix theory.
As in the previous calculation of the leading-order correction to the diagonal
approximation we find that the third-order contribution can be attributed to
exceptional orbits representing the intersection of diagram classes.

PACS numbers: 03.65.N, 05.45.Mt

1. Introduction

The recent work of Sieber and Richter [1, 2] has renewed the hope that spectral correlations
in systems with chaotic classical analogue can be explained within periodic-orbit theory.
The universality of these correlations, known as the BGS conjecture [3], is supported by
overwhelming numerical evidence [4]. On the other hand there is no satisfactory theory for
individual chaotic systems, i.e. without any disorder averages. Numerically it was found that
on time scales longer than the ergodic time of the classical analogue, the fluctuations in the
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energy spectrum of a quantum system follow those of an appropriate ensemble of random
matrices. For random matrices, the form factor K(τ), which is the Fourier transform of the
spectral two-point correlator, is

KGOE(τ ) = 2τ − τ log(1 + 2τ) (0 � τ � 1)
(1)

= 2τ − 2τ 2 + 2τ 3 + O(τ 4)

for systems with time-reversal symmetry (TR), or

KGUE(τ ) = τ (0 � τ � 1) (2)

for systems with no time-reversal symmetry (NTR) [5].
The semiclassical limit of the form factor in a quantum chaotic system can be written

in terms of a double sum over periodic orbits (PO) using the Gutzwiller trace-formula [6].
On short times the relatively small number of contributing periodic orbits allows explicit
calculation, however the number of POs proliferates exponentially with time, so evaluating
the sum exactly quickly becomes impossible. In any case the universality of the BGS
conjecture suggests that beyond the ergodic time the form factor does not depend on the
specific dynamics of the given system. Berry [7] explained that this universality arises from
the combined contributions of the huge number of ergodic POs. He then calculated the form
factor, neglecting all correlations between POs other than exact symmetries. Within this
‘diagonal approximation’, he obtained the leading order in τ of the random matrix theory
(RMT) result. Efforts to reproduce equations (1), (2) beyond the diagonal approximation
have been limited in their success. At present there is no way to derive the series expansion
of equation (1) from the POs of any chaotic system, nor is there a good explanation of why
equation (2) happens to be exactly reproduced by the diagonal approximation for τ � 1.

Currently we only know how to go beyond the diagonal approximation in a few special
cases. In [1, 2] it was shown, that for uniformly hyperbolic and time-reversal invariant billiards
on surfaces with constant negative curvature the second-order contribution −2τ 2 is related to
correlations within pairs of orbits differing in the orientation of one of the two loops resulting
from a self-intersection of the orbit. We went on to derive the same result for a large family
of quantum graphs [8, 9] with ergodic classical dynamics, in particular our result was not
restricted to uniformly hyperbolic dynamics [10]. A subsequent study [11] indicated that
the mechanism generating the contribution −2τ 2 also works for systems with antiunitary
symmetries other than simple time reversal.

Given these results it is a plausible conjecture that in analogy with disordered systems
[12] the terms in the power series expansion of K(τ) can be identified with the contributions of
orbit pairs generated by more and more self-intersections. In the present paper we will explore
this idea for a particular model system: extending our recent paper [10] we will calculate the
form factor up to order τ 3 for a particular family quantum graphs.

This paper is organized as follows: In section 2, we define our model and explain how
the form factor can be expressed as a double sum over periodic orbits. In section 3, this sum
is rewritten in terms of diagrams, representing all orbits with a given number and topology of
self-intersections. Diagrams resulting in a contribution of order τ 3 are considered explicitly.
In section 4, we show that those diagrams which do not require time-reversal invariance
cancel each other. The summation over the additional diagrams in graphs with time-reversal
invariance is performed in section 5, unfortunately here our results are limited to a family of
graphs with uniformly hyperbolic classical dynamics. Finally, in section 6 we explain how
we selected the diagrams which give τ 3-contributions by establishing a heuristic rule which
predicts the order of a given diagram’s contribution without an explicit calculation.
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2. Quantum graphs and periodic-orbit theory

We consider graphs with N vertices connected by a total of B directed bonds. A bond leading
from vertex m to vertex l is denoted by (m, l). For graphs with time-reversal invariance it is
necessary that for any bond (m, l) there exists also the reversed bond (l,m). We do not rule
out the possibility of loops, i.e. bonds of the form (m,m).

The discrete quantum dynamics on a graph are defined in terms of a B × B unitary
time-evolution operator S(B), which has matrix elements S

(B)
m′l′,lm describing the transition

amplitudes from the directed bond (m, l) to (l′,m′).4 The topology of the underlying graph is
reflected in the quantum dynamics because the amplitudes are non-zero only if the two bonds
are connected at a vertex, l = l′. We choose

S
(B)
m′l′,lm = δl′lσ

(l)
m′m eiφml (3)

with σ
(l)
m′m denoting the vertex-scattering matrix at vertex l. An explicit example of such a

graph will be given in section 5, here we keep the discussion as general as possible. The
phases φml are random variables distributed uniformly in [0, 2π ] and define for fixed B an
ensemble of matrices S(B) which can be used for averaging. It is possible to interpret this
ensemble as an infinite energy average for a given quantum graph with rationally independent
bond lengths [8]. For a unitary operator such as S(B) the form factor is defined at integer times
t = 0, 1, . . . , by

K(B)(τ ) = B−1〈|Tr St |2〉{φ} (4)

where τ is the scaled time τ = t/B. See [4] for more details on the description of two-
point correlations for unitary operators. For finite B, the form factor (4) should be compared to
ensembles of unitary random matrices of dimension B (CUE for NTR, COE for TR). However,
we are interested here in the limit of large graphs B → ∞, keeping the scaled time τ fixed

K(τ) = lim
B→∞

K(B)(τ ) (5)

because this is equivalent to the semiclassical limit of chaotic systems [8]. It is in this limit
that the form factor is expected to assume the corresponding universal form (1) or (2).

Associated with the unitary matrix S is the doubly stochastic matrix M with

M
(B)
m′l,lm = ∣∣S(B)

m′l,lm

∣∣2 = ∣∣σ (l)
m′m

∣∣2
. (6)

It defines a Markov chain on the graph which represents the classical analogue of our quantum
system [8, 13]. The matrix M can be considered as the Frobenius–Perron operator of the
discrete classical dynamics. Matrix elements of powers of this operator give the classical
probability to get from bond (m, l) to bond (k, n) in t steps

P
(t)

(m,l)→(k,n) = [Mt ]nk,lm. (7)

Under very general conditions it can be shown that the dynamics generated by M is ergodic
and mixing5, i.e. for fixed B and t → ∞ all transition probabilities become equal

P
(t)

(m,l)→(k,n) → B−1 as t → ∞ ∀(m, l), (k, n). (8)

However, since in equation (5) the limits B → ∞ and t → ∞ are connected by fixing τ ,
equation (8) is not sufficient for showing agreement between PO expansion and RMT. We
need a stronger condition such as

P
(τB)

(m,l)→(k,n) → B−1 as B → ∞ ∀(m, l), (k, n). (9)
4 We drop the parentheses when a bond is used as an index of a matrix.
5 It is plausible to assume that these conditions are satisfied if the underlying graph is connected and one excludes
special cases such as bipartite graphs [14].
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This was already discussed in [15] in connection with the diagonal approximation. In fact
the precise condition may in principle depend on the order to which agreement with RMT
is required. In [10] we derived a condition sufficient for the leading-order correction to
the diagonal approximation which was slightly stronger than equation (9): the speed of
convergence to equidistribution with increasing B cannot be arbitrarily slow. However,
exponential convergence (corresponding to a spectral gap of M which is bounded away from
zero uniformly in B) is sufficient in any case. We will restrict ourselves to graphs which obey
this condition rather than derive a more precise condition for the applicability of equation (9)
to the summation of third-order diagrams.

A connection between the quantum form factor equation (4) and the classical dynamics
given by equation (6) can be established by representing the form factor as a sum over
(classical) POs. We expand the matrix powers of S in equation (4) and obtain sums over
products of matrix elements Sp2p1,p1pt

· · · Sp4p3,p3p2Sp3p2,p2p1 . Obviously each such product
can be specified by a sequence of t vertices. Vertex sequences which are identical up to a cyclic
shift give identical contributions and will be combined into the contribution of a periodic orbit
P = [p1, . . . , pt ]. For most POs there are t different cyclic shifts. Exceptions to this rule
are possible if a PO is a repetition of a shorter orbit, but the fraction of such orbits decreases
exponentially in t. Moreover, if we assume the existence of the limit (5), we can approach it
through sequences of prime t, which totally excludes repetitions. We obtain

Tr St = t
∑
P

AP eiφP (10)

with AP = ∏t
i=1 σ

(pi)
pi+1,pi−1 and φP = ∑t

i=1 φpi+1,pi
(vertex indices are taken modulo t).

Substituting this into equation (4) we obtain a double sum over periodic orbits

K(B)(τ ) = t2

B

〈∑
P,Q

AP A∗
Q ei(φP −φQ)

〉
{φ}

. (11)

We can now perform the average over the phases φml associated with the directed bonds. If the
system does not have time-reversal symmetry, all bond phases can be varied independently.
The total phase of an orbit, φP , can be written as linear combinations of the bond phases,
φP = ∑

lm n
(P )
lm φlm, where n

(P )
lm counts visits of the orbit P to bond (m, l). Then we can

average over φlm using〈
ei(n(P )

lm φlm−n
(Q)
lm φlm)

〉
φlm

= δ
n

(P )
lm ,n

(Q)
lm

. (12)

Thus averaging over all bond phases, {φ}, amounts to picking out only those pairs of orbits
which visit the same set of bonds the same number of times. Therefore, the form factor for a
quantum graph with no time-reversal symmetry (NTR) is

K
(B)
NTR(τ ) = t2

B

∑
P,Q

AP A∗
Q

[∏
lm

δ
n

(P )
lm ,n

(Q)
lm

]
. (13)

Time-reversal symmetry implies symmetric vertex-scattering matrices

σ
(l)
m′m = σ

(l)
mm′ (14)

and that the phases of a pair of bonds (m, l) and (l,m) related by time reversal obey φml = φlm.
The average in equation (11) runs over all independent phases and results in

〈ei(φP −φQ)〉{φ} =
∏
l�m

δ
n

(P)
lm +n

(P )
ml ,n

(Q)
lm +n

(Q)
ml

. (15)
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Thus averaging over all independent bond phases, {φ}, amounts in this case to picking out
only those pairs of orbits which visit the same set of bonds, or their time reverses, the same
number of times. Hence, the form factor for a quantum graph with time-reversal symmetry is

K
(B)
TR (τ ) = t2

B

∑
P,Q

AP A∗
Q

∏
l�m

δ
n

(P)
lm +n

(P )
ml ,n

(Q)
lm +n

(Q)
ml

 . (16)

If the graph is defined to have bonds with fixed lengths and magnetic vector potential as in [8],
we can average over an infinite energy window (for NTR systems we also average over the
vector potential). Then the orbit pairs contributing to the form factor are those where P,Q

have exactly the same lengths. On a graph with rationally independent bond lengths this is
equivalent to

NTR : n
(P )
lm = n

(Q)
lm ∀l, m (17)

TR : n
(P )
lm + n

(P )
ml = n

(Q)
lm + n

(Q)
ml ∀l, m (18)

so this averaging procedure also leads to equations (13) and (16).

3. The expansion in self-intersections of the periodic orbits

3.1. From orbits to diagrams

The calculation of the form factor is now reduced to a combinatorial problem: the sum over
the pairs P,Q in equations (13) and (16) must be organized such that equation (17) or (18)
is satisfied. This can be done by composing P and Q from the same segments, or arcs,
which appear in P and Q in different order and/or orientation. This is possible if the orbit
P contains self-intersections, i.e. vertices which are traversed more than once, see figure 1
for examples. In general, an orbit P has many self-intersections and many partner orbits Q
satisfying equations (17), (18) such that a summation over all possible Q for a fixed P is too
complicated. Instead we fix a permutation of arcs followed by the time reversal of selected
arcs and sum first over all possible pairs of orbits P,Q related by this transformation. The
clearest way to represent all possible transformations is graphical (figure 1), hence we refer to
them as diagrams. The sum over all diagrams finally gives the form factor.

The main problem with this approach is to ensure that each orbit pair P,Q is counted
once and only once. This is difficult because for some pairs P,Q the operation transforming
P into Q is not unique. Such orbit pairs are relatively rare in number but nevertheless they give
essential contributions to the form factor [10]. We will explain our techniques for preventing
the double counting of orbit pairs in sections 3.2 and 3.3.

If we consider P as a single arc with no intersections, Q = P is the only possibility
in the NTR case. For TR the orientation of the arc can be reversed such that Q = P is a
second option. The corresponding diagrams have a simple circular shape. Summation over
these orbit pairs is nothing other than the diagonal approximation. It produces KNTR1 = τ

and KTR1 = 2τ , respectively. In [10] we considered orbits, P, made from two arcs, 1 and 2,
joined at a single intersection α and evaluated the (off-diagonal) contribution corresponding
to the resulting 8-shaped diagram. We found this gave rise to the second-order term in
equation (1), KTR2 = −2τ 2, while there is no contribution of this order for a NTR system.
In this paper, we calculate the τ 3-contribution by assuming that P contains three or four arcs
connected at intersections. A discussion of why only these particular diagrams contribute to
the τ 3-contribution is deferred to section 6.
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NTR3a

orbits : 1α2β3α4β and 1α4β3α2β

orbits : 1α2β3α4β and 1α4β2α3β

factors : 1/4
restrictions : (1   δss) (1   δss)

restrictions : (1   δss) (1   δss) (1   δss)

restrictions : (1   δss) (1   δss)

NTR3b

TR3a

orbits : 1α2α3α and 1α3α2α

factors : 1/3

factors : 1/2

with 1 = 2 and 1 = 3

restrictions : (1   δsf) (1   δsf)

with 1 = 1 and 3 = 3

restrictions : (1   δss) (1   1 δsf) (1   1 δsf)

with 1 = 1, 2 = 2 and 3 = 3

orbits : 1α2β3β4α and 1α4β3β2α

orbits : 1α2α3α and 1α3α2α

TR3b

TR3c

factors : 1/2

factors : 1

2 2

  

Figure 1. Topology of NTR3a, NTR3b, TR3a, TR3b and TR3c. In each case a pair of orbits
is shown. One follows the solid line throughout (in the direction marked by triangular arrows).
The second follows the solid lines (possibly with reversed direction) except at the intersections
(denoted by circles) where it follows the dotted line. Each circle represents a single vertex where a
self-intersection of the orbit occurs. Next to each topology we give the corresponding weight factor
(section 3.2) and the restrictions (section 3.3). Restrictions are indicated by the double-headed
arrows. Solid arrows indicate a ‘full’ restriction of the form (1 − δij ), while dotted arrows indicate
a ‘half’ restriction of the form (1 − 1

2 δij ).

We begin by listing in figure 1 all diagrams which contribute at third order in τ . We denote
arcs by numbers 1, 2, . . . , and the intersection points by Greek letters α, β, . . . . An arc can
be identified by a sequence of vertices, which does not include the intersection vertices, or,
alternatively, by a sequence of bonds, which includes the bonds from and to the intersection
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points. The length of the ith arc is denoted by ti and is defined as the number of bonds in the
arc (which is one more than the number of vertices in the arc). The sum of the lengths of all
arcs gives t, the length of the orbit. The length of an arc is at least one. For an arc i leading
from α to β we denote the first vertex following α by si and the last vertex before β by fi .
In the degenerate case when the arc going from α to β is the single bond (α, β) and does not
contain any vertices (ti = 1) this implies si = β and fi = α.

As shown in figure 1, the arcs forming an orbit P and its partner Q are identical, but the
way they are connected at the intersections differs. The orbit P is given by the connections
drawn as continuous lines, while its partner orbit Q is given by connections drawn as dotted
lines. The orbits P and Q are also written as a symbolic code to the left of each diagram: a
path that goes from the beginning of arc 1 to vertex α then on arc 2 to vertex β and so on is
denoted as 1α2β · · ·. The diagrams in figure 1 divide into two classes, NTR and TR. In the
NTR diagrams all the arcs of Q have the same orientation as the corresponding arcs in P, while
in the TR diagrams some of the arcs of Q are time reversed. For a system with no time-reversal
symmetry, only the two NTR diagrams are possible, thus there are two τ 3-contributions to the
form factor,

KNTR3 = KNTR3a + KNTR3b. (19)

For a system with time-reversal symmetry, diagrams in both classes contribute and the form
factor is a sum of five terms

KTR3 = 2 (KNTR3a + KNTR3b + KTR3a + KTR3b + KTR3c) . (20)

The factor of two is due to the fact that for every diagram in figure 1 there is another one with
Q replaced by its complete time reversal, Q, which gives an identical contribution.

3.2. Avoiding double counting I: multiplicity factors

The set of diagrams possesses certain degeneracies which can be accounted for by simple
prefactors multiplying the contributions. One such degeneracy is taken care of by the factor
of two in equation (20). In this subsection we discuss how to determine the other multiplicity
factors arising due to the cyclicity of the POs and symmetries in the diagrams. To sum over
all orbit pairs P,Q for a given diagram we sum over all possible arcs forming the orbit P.
Consider the diagram NTR3a as an example. Let l1 and l3 be some fixed arcs starting at β and
ending at α, while l2 and l4 denote arcs from α to β. As we sum over all possible realizations
of arcs 1, 2, 3, 4 in NTR3a, we encounter a particular orbit P where these arcs are given by

1 = l1 2 = l2 3 = l3 4 = l4. (21)

However, we also encounter the orbit P ′ where the arcs are

1 = l3 2 = l4 3 = l1 4 = l2. (22)

The orbit P ′ is related to P by a cyclic shift and, therefore, it is actually the same orbit. As
we are focusing on pairs of orbits, we check the partner orbits resulting from P and P ′, too.
The partners for P and P ′ are Q = [l1, α, l4, β, l3, α, l2, β] and Q′ = [l3, α, l2, β, l1, α, l4, β],
respectively, and they are also related by a cyclic shift. Hence in the process of summation
we will encounter the same orbit pair four times, once for each of the four possible cyclic
permutations of P. To compensate for this we introduce a multiplicity factor of a quarter.

To put this formally, we denote by q(P ) the operation transforming P into Q for a given
diagram, e.g., qNTR3a([1234]) = [1432] and qTR3a([1234]) = [142̄3̄]. Further we denote by
σ the (cyclic) left shift of the symbolic code, i.e. σ([1234]) = [2341]. To determine the
multiplicity factor we need to count all cyclic permutations σ k such that

q ◦ σ k(P ) = σ k′ ◦ q(P ) or q ◦ σ k(P ) = σ k′ ◦ q(P ) (23)
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=v2 v3= =v5v4 v6

v1

v2

v1

v3

= =v5v4 v6

v1

v2v3 v4=

Figure 2. Examples of ambiguous intersections, where we have removed the ambiguity by placing
the intersection (the shaded vertex) as far to the right as possible. This is enforced in the left-hand
diagram by introducing a factor of (1− δv1v2 ), while in the other diagrams it is enforced by a factor
of (1 − δv1v2 δv1v3 ).

for some k′ and arbitrary P, i.e. application of q to the shifted code yields the same or the
completely time-reversed result, up to another shift. Obviously the second option is only
applicable to the TR diagrams. Noting that the trivial solution k = k′ = 0 is always available,
we proceed to list the factors for each diagram.

• NTR3a: We have qNTR3a ◦ σ k = σ 4−k ◦ qNTR3a for any k = 0, 1, 2, 3 and consequently
mNTR3a = 4.

• NTR3b: Similarly we have qNTR3b ◦ σ k = σ 3−k ◦ qNTR3b for k = 0, 1, 2 and mNTR3b = 3.
• TR3a: The only nontrivial solution to equation (23) is k = 2 where qTR3a ◦ σ 2 = qTR3a.

Therefore we have mTR3a = 2.
• TR3b: The only nontrivial solution is k = 2 where qTR3b ◦ σ 2 = σ 2 ◦ qTR3b. Therefore

we have mTR3b = 2.
• TR3c: Equation (23) has no solution besides the identity k = 0, therefore mTR3c = 1.

When we evaluate the contribution from each diagram we will include a factor 1/m in order
to compensate for the ambiguity just described.

3.3. Avoiding double counting II: restrictions and exceptions

As shown in [10], tangential self-intersections of orbits are a potential source for double
counting of orbits which must carefully be avoided. By a tangential intersection we mean the
situation where an orbit does not merely cross itself but follows itself for at least one bond.
For example, the orbit

· · · → fi → α → β → si+1 → · · · → fj+1 → β → α → sj+1 → · · · (24)

crosses itself along the non-directed bond (α, β). It is easy to mistakenly count such an orbit
once with α as the intersection point and once with β as the intersection point. We avoid this
using a method outlined in [10]. We uniquely define the intersection point by ruling that if
there is an ambiguity then the intersection is as far to one side as possible. As an example we
show some ambiguous intersections in figure 2 and insist that the intersection is as far to the
right as possible. For the 2-intersection we do this by demanding that v1 	= v2, this is achieved
by introducing a factor of the type

(
1 − δv1v2

)
, referred to as a restriction on the diagram.

For the 3-intersections a restriction of the form
(
1 − δv1v2δv1v3

)
removes the ambiguity.

However, we will not actually use this restriction on any 3-intersection, because we will
see that stronger restrictions apply in the diagrams we evaluate.

For NTR3a, TR3a and TR3b we choose the following restrictions to ensure that the
ambiguities at intersections are removed

• NTR3a: �NTR3a = (
1 − δs2s4

)(
1 − δs1s3

)
• TR3a: �TR3a = (

1 − δs2s4

)(
1 − δs3f4

)
• TR3b: �TR3b = (

1 − δs2f4

)(
1 − δs4f2

)
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where si denotes the first vertex on the arc i and fi denotes the last. We wish to emphasize
that there is no unique way of imposing the restrictions, since they are merely convenient
ways of excluding the double counting of certain contributions. What is more, the individual
results for NTR3a, NTR3b, TR3a, TR3b and TR3c may depend on the particular choice of
restrictions. Only the final sums in equations (19) and (20) do not depend on them.

Now that we come to NTR3b, we will see exactly how much freedom we have in choosing
restrictions. First we want to ensure that we count tangential intersections correctly. For a
3-intersection, such as the one in NTR3b, we could do this by setting �NTR3b = (

1−δs1s2δs2s3

)
.

However we also note that there are ambiguous contributions which could be counted in either
NTR3a or NTR3b:6

• NTR3b with either s1 = s2, s2 = s3 or s1 = s3 is equivalent to NTR3a with any of the
following: (t1 = 1 & f1 = f3), (t2 = 1 & f2 = f4), (t3 = 1 & f1 = f3) or (t4 = 1 &
f2 = f4)

• NTR3b with either f1 = f2, f2 = f3 or f1 = f3 is equivalent to NTR3a with any of the
following: (t1 = 1 & s1 = s3), (t2 = 1 & s2 = s4), (t3 = 1 & s1 = s3) or (t4 = 1 &
s2 = s4).

Obviously we should only count each of these contributions once, but we have the freedom to
choose whether we count each of them in NTR3a or NTR3b. The physical quantities (19) and
(20) contain the sum of NTR3a and NTR3b, so all choices are strictly equivalent. However
given that we have imposed the restriction s1 	= s3 on NTR3a the second type of orbits (NTR3b
with fi = fj ) cannot belong to NTR3a. Thus, once we have chosen the above restrictions for
NTR3a we are forced into the choice

�NTR3b = (
1 − δs1s2

)(
1 − δs1s3

)(
1 − δs2s3

)
. (25)

Before we can move on to TR3c, we must first look carefully at the restriction we placed
on TR3a. In section 3.2 we introduced the factor of 1/2 to avoid double counting. The double
counting in this particular instance was caused by the permutation σ 2 = [3412] which swaps
around arcs 1 ↔ 3 and 2 ↔ 4 and produces a pair P ′ = σ 2(P ) and Q′ = σ 2(Q), which
is identical to P,Q up to a shift. However, the restriction s2 	= f4 that we introduced on
TR3a is not symmetric with respect to this permutation. For the orbits satisfying s1 	= f2

and s3 	= f4 this does not present any problems. Let us consider what happens when arcs 1
and 2 are different but have s1 = f2. This orbit is still counted twice in the summation over
all possible arcs, but in the second instance the intersection point β is shifted, resulting in
t ′1 = t3 + 1, t ′2 = t4 + 1, t ′3 = t1 − 1, t ′4 = t2 − 1. We illustrate that by the following example
of orbits which contribute to TR3a. The pair

P = [β, γ, a, α, b, γ, β, d, α, c] and Q = [β, γ, a, α, c, β, γ, b, α, d] (26)

is obtained by combining the arcs

arc 1 = (β, γ ) → (γ, a) → (a, α) arc 3 = (β, d) → (d, α) (27)

arc 2 = (α, b) → (b, γ ) → (γ, β) arc 4 = (α, c) → (c, β) (28)

with the intersection points α and β, or by combining the arcs

arc 1 = (γ, β) → (β, d) → (d, α) arc 3 = (γ, a) → (a, α) (29)

arc 2 = (α, c) → (c, β) → (β, γ ) arc 4 = (α, b) → (b, γ ) (30)
6 This abundance of choice, when any of the three NTR3b diagrams is equivalent to any of the four NTR3a diagrams
is another manifestation of the cyclic symmetry discussed in section 3.2 and is taken care of by the multiplicity factors.
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with the intersection points α and γ . We therefore see that the factor of 1/2 works also when
s1 = f2. But not when, in addition to s1 = f2, t1 or t2 is equal to 1. These orbits appear in the
sum for TR3a only once and are subsequently multiplied by 1/2, so it appears we miscount
their contribution. On the other hand these orbits can also be counted in TR3c, as shown
below. We find it convenient to keep the above restriction on TR3a, thus counting half their
contribution in TR3a. This forces us to count the other half of their contribution in TR3c.

Now we can move on to finding the restrictions on TR3c. First we list the special cases
of TR3c which could be counted in other diagrams.

(i) TR3c with s1 = f2 is equiv. to TR3a with (t3 = 1 & s3 = f4) or (t1 = 1 & s1 = f2)
(ii) TR3c with s2 = f3 is equiv. to TR3a with (t4 = 1 & s3 = f4) or (t2 = 1 & s1 = f2)

(iii) TR3c with s2 = s3 is equiv. to TR3a with (t1 = 1 & f1 = f3) or (t3 = 1 & f1 = f3)
(iv) TR3c with f1 = f2 is equiv. to TR3a with (t2 = 1 & s2 = s4) or (t4 = 1 & s2 = s4)
(v) TR3c with s1 = f1 is equiv. to TR3b with (t2 = 1 & s2 = f4) or (t4 = 1 & s4 = f2)

(vi) TR3c with s3 = f3 is equiv. to TR3b with (t2 = 1 & s2 = f4) or (t4 = 1 & s4 = f2)

Now we carefully count in TR3c only those contributions which have not already been counted
in TR3a or TR3b. Lines (i) and (ii) above show that cases s1 = f2 and s2 = f3 should be
counted in TR3c with the factor 1/2. Line (iii) shows that the case s2 = s3 should not be
counted in TR3c as it is fully counted in TR3a; the case f1 = f2, line (iv), should be fully
counted in TR3c. Lines (v) and (vi) show that the cases s1 = f1 and s3 = f3 are not counted
in TR3b and should be fully counted in TR3c. All this is realized by the restrictions

�TR3c = (
1 − δs2s3

) (
1 − 1

2δs2f3

) (
1 − 1

2δs1f2

)
. (31)

Above we have ensured that no orbits are double counted among the diagrams NTR3a,
NTR3b, TR3a, TR3b and TR3c. However, we should also exclude the orbits that have already
been counted at lower orders of the expansion. Considering NTR3a, if arc 1 is identical to arc
3 (or arc 2 identical to arc 4), the diagram is reduced to giving a contribution to the diagonal
approximation, so it should not be counted here. Fortunately, the restrictions we have put on
NTR3a ensure that this contribution is not counted. Moving on to NTR3b, if any two arcs in
the NTR3b diagram are self-retracing the diagram reduces to a diagram already counted as a
τ 2-contribution in a TR system. Therefore, in the TR case, we should subtract its contribution
from the sum. However, we will see at the end of section 4.1 that such a contribution is zero.

For TR3a, we insist that 1 	= 2̄, 1 	= 3, 4 	= 2 and 4 	= 3̄ because the orbits breaking these
rules have already been counted at O[τ 2] of the expansion. For the same reason we insist that
TR3b obeys 1 	= 1̄, 3 	= 3̄, 2 	= 4̄, while TR3c obeys 1 	= 1̄, 2 	= 2̄ and 3 	= 3̄. Note that
some of the restrictions are superfluous since they refer to orbits that are already excluded.
For example, we can drop the restriction 4 	= 3̄ because this is automatically enforced by the
stronger restriction s3 	= f4.

The complete set of restrictions is as follows:

• NTR3a: �NTR3a = (
1 − δs2s4

)(
1 − δs1s3

)
• NTR3b: �NTR3b = (

1 − δs1s2

)(
1 − δs1s3

)(
1 − δs2s3

)
where orbits with (2, 3) = (2̄, 3̄) must

be subtracted for systems with TR symmetry.
• TR3a: �TR3a = (

1 − δs2s4

)(
1 − δs3f4

)
with 1 	= 2̄ and 1 	= 3.

• TR3b: �TR3b = (
1 − δs2f4

)(
1 − δs4f2

)
with 1 	= 1̄ and 3 	= 3̄.

• TR3c: �TR3c = (
1 − δs2s3

)(
1 − 1

2δs2f3

)(
1 − 1

2δs1f2

)
with 1 	= 1̄, 2 	= 2̄ and 3 	= 3̄.

We reiterate that this self-consistent set of restrictions is not unique. And, although this choice
leads to simpler calculations than all the others we tried, we cannot rule out the possibility that
there is another self-consistent set of restriction which would further simplify our calculations.
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3.4. Orbit amplitudes

Before we can attempt the summation over all orbit pairs P,Q within a given diagram, we still
need to understand the structure of the product AP A∗

Q appearing in equations (13), (16). We
consider the diagram NTR3b as an example. Let arc 1 be of length t1, consisting of the vertices[
x1, x2, . . . , xt1−1

]
, where x1 ≡ s1 and xt1−1 ≡ f1. Then both AP and AQ will contain factors

σ (x1)
x2,α

, σ (x2)
x3,x1

, σ (x3)
x4,x2

, . . . , σ
(xt1−1)
α,xt1−2 . Thus when we evaluate the product AP A∗

Q, the contribution
of the arc 1 will come in the form∣∣σ (x1)

x2,α
σ (x2)

x3,x1
σ (x3)

x4,x2
· · · σ (xt1−1)

α,xt1−2

∣∣2 = P(α,x1)→(x1,x2)→···→(xt1−1,α) ≡ P1 (32)

which is the classical probability of following arc 1 from bond (α, s1) to bond (f1, α).7

Analogous considerations for arcs 2 and 3 lead to the probabilities P2 and P3. The factors
not yet accounted for in P1, P2, P3 are the transition amplitudes picked up at the intersection
vertex α:

AP A∗
Q = P1 × P2 × P3 × σ

(α)
s3f2

σ
(α)
s2f1

σ
(α)
s1f3

× (
σ

(α)
s2f3

σ
(α)
s3f1

σ
(α)
s1f2

)∗
. (33)

To evaluate the contribution of a given diagram a product such as equation (33) must be summed
over all free parameters, namely all intersection points and all possible arcs connecting these
points. The latter summation includes a sum over the lengths ti of these arcs with the restriction
that the total length of the orbit is t.

The summation over all the intermediate vertices x2, x3, . . . , xt1−2 along arc 1 can be
performed immediately, because it is unaffected by the restrictions discussed in the previous
subsection. This summation adds the classical probabilities of all possible paths leading
from bond (α, s1) to bond (f1, α) in t1 − 1 steps and results consequently in the classical
transition probability P

(t1−1)

(α,s1)→(f1,α) given by equation (7). Analogous summations over the

other arcs produce P
(t2−1)

(α,s2)→(f2,α) and P
(t3−1)

(α,s3)→(f3,α). The above approach extends trivially to the
TR diagrams when we recall that time-reversal symmetry implies that the matrices σ (v) are
symmetric.

The remaining summation is over the lengths ti of all arcs, the first and the last vertex si

and fi of all arcs i with ti > 1 and the intersection points such as α. For general graphs this sum
is still too complicated for explicit calculations, mainly because transition probabilities such
as P

(t1−1)

(α,s1)→(f1,α) are dependent on the details of the topology of the graph. For sufficiently long
arcs, however, these transition probabilities can be replaced by B−1 according to equation (9).
Then the sum over vertices decouples into a product of sums associated with each self-
intersection vertex α which can finally be evaluated using the unitarity of the vertex-scattering
matrices σ (α). This is the strategy we shall follow in the next two sections, where explicit
summation of the NTR3 and TR3 diagrams is performed.

4. Summing the NTR contributions

4.1. Summation of NTR3 diagrams

Starting with the NTR3a diagram, we write

KNTR3a(τ ) = 1

4

t2

B

∑
{ti }

δ

[
t −

4∑
i=1

ti

]∑
α,β

∑
{si ,fi }


NTR3a × PNTR3a × �NTR3a (34)

7 P1 = 1 if arc 1 contains no vertices, i.e. if t1 = 1.
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where


NTR3a = σ
(α)
s4f3

σ
(β)

s3f2
σ

(α)
s2f1

σ
(β)

s1f4
σ

(α)∗
s2f3

σ
(β)∗
s3f4

σ
(α)∗
s4f1

σ
(β)∗
s1f2

(35)

PNTR3a = P
(t1−1)

(β,s1)→(f1,α)P
(t2−1)

(α,s2)→(f2,β)P
(t3−1)

(β,s3)→(f3,α)P
(t4−1)

(α,s4)→(f4,β) (36)

�NTR3a = (
1 − δs1s3

)(
1 − δs2s4

)
. (37)

As t → ∞ and t = t1 + t2 + t3 + t4, at least one of the arcs must be long. Without loss of
generality we assume that t1 � t/4. From equation (9) we have P

(t1−1)

(β,s1)→(f1,α) ≈ B−1 and

the only factors in equation (34) depending on f1 are σ
(α)
s2f1

σ
(α)∗
s4f1

. Using the unitarity of the
σ -matrices we perform the summation∑

f1

σ
(α)
s2f1

σ
(α)∗
s4f1

= δs2s4 . (38)

However, the restriction �NTR3a contains the term
(
1 − δs2s4

)
, leading to the result

KNTR3a = 0. (39)

Calculation of KNTR3b goes along the same route with

KNTR3b(τ ) = 1

3

t2

B

∑
{ti }

δ

[
t −

3∑
i=1

ti

] ∑
α

∑
{si ,fi }


NTR3b × PNTR3b × �NTR3b (40)

where


NTR3b = σ
(α)
s3f2

σ
(α)
s2f1

σ
(α)
s1f3

σ
(α)∗
s2f3

σ
(α)∗
s3f1

σ
(α)∗
s1f2

(41)

PNTR3b = P
(t1−1)

(α,s1)→(f1,α)P
(t2−1)

(α,s2)→(f2,α)P
(t3−1)

(α,s3)→(f3,α) (42)

�NTR3b = (
1 − δs1s2

)(
1 − δs2s3

)(
1 − δs3s1

)
. (43)

Exactly as for NT3a we can sum over fi where arc i is long, which results in δ-function which
we combine with �NTR3b to get the answer

KNTR3b = 0. (44)

The sum of the NTR3a and NTR3b diagrams vanishes and so

KNTR3(τ ) = 0. (45)

Thus we see that for a wide class of quantum graphs without time-reversal symmetry the
τ 3-contribution to the form factor is zero, as expected from the BGS conjecture.

We wish to note that the derivation given above is relatively simple, since NTR3a and
NTR3b both vanish due to the particular choice of restrictions which make orbit pairs in the
intersection of NTR3a and NTR3b unique (see the discussion near equation (25)). Had we
chosen to assign all ambiguous diagrams to NTR3a, then the results for NTR3a and NTR3b
would both have been non-zero, although the total sum KNTR(τ ) would of course still have
equalled zero.

To apply the above result to the TR case, described by (20), we must subtract the
contribution of the NTR3b diagram with two self-retracing arcs, as discussed in section 3.3.
We use the fact that long self-retracing arcs give only exponentially small corrections because
the number of free summation variables is reduced by a factor of 2. Thus we only need to
consider short self-retracing arcs. Without loss of generality we can assume that arcs 2 and
3 are self-retracing and short, implying that t1 must be long enough for P (t1−1) = B−1 to
hold. Then the sum over f1 results in a factor of δs2s3 and, combining this with the restriction
�NTR3b, we find that the contribution of this case is identically zero. Thus the NTR diagrams
contribute nothing to the form factor of TR systems.
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Figure 3. The picture on the left is a self-intersection in a NTR contribution with seven crossing
arcs. If two bonds leaving this intersection coincide, in this case 2 and 6, the intersection can be
redrawn (as on the right) as more than one intersection. In this case there are three intersections,
one 2-intersection, one 3-intersection and one 4-intersection, the latter two being at the same vertex.

4.2. Generalization to higher orders

One may speculate that the arguments given in the previous subsection admit a straightforward
generalization to higher-order diagrams. Given an nth-order diagram, we impose the following
restriction on each of its intersections

� =
∏
i,j

(
1 − δsi sj

)
(46)

where the product is over the set of all arcs leaving the intersection. Now we can evaluate
diagrams in the same way as we did for n = 3. As soon as n  t/terg at least one arc must
be long. If arc i is long then P (ti−1) � B−1 and the sum over fi generates a δ-function.
Combining this δ-function with the restriction at the vertex produces zero.

To justify the choice of the restriction (46) for any intersection, we note that if any two
bonds leaving the vertex are the same, the intersection can be rearranged as a group of more
than one intersection, each satisfying the above restriction. An example of such rearrangement
is presented in figure 3. If the original intersection was part of an nth-order diagram, then the
rearranged one is part of another valid nth-order diagram (as can be shown by counting the
powers of B, see section 6). The above restriction thereby helps to prevent double counting of
orbits with tangential intersections.

This argument essentially shows that the contribution of all nth-order diagrams is zero in
the NTR case. However, an important detail is missing: one has to show that all eligible pairs
of periodic orbits belong to one and only one diagram, i.e. that we did not miss anything and
did not count anything more than once. Unfortunately we found pairs of orbits that violate
both parts of this statement. These counterexamples seem to be ‘rare’, in the sense that the
sum of their contributions vanish as B → ∞, however a rigorous proof of this observation
remains an open problem.

To summarize, a generalization of the argument of section 4.1 sketches a proof of exactness
of the diagonal approximation for τ � 1 in the absence of time-reversal symmetry. To complete
the proof one would have to verify that the above restriction counts all relevant pairs of orbits
once and only once.

5. Summation of TR3 diagrams for a fully connected ‘Fourier’ graph

Evaluating KTR3 for a general class of graphs is a complicated and tedious task [16].
Fortunately, the calculation simplifies considerably for a special case described below. In
this section we restrict our attention to fully connected graphs with N vertices and B = N2
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Figure 4. A fully connected graph with four vertices and sixteen directed bonds.

directed bonds, including a loop at each of the vertices. An example with N = 4 is shown in
figure 4. We assume that the vertex-scattering matrices are

σ
(l)
m′m = 1√

N
exp

(
2π i

mm′

N

)
(47)

for all l. These matrices were proposed in [15] and result in a particularly fast convergence
to RMT-like statistics. Because of the analogy to the discrete Fourier transformation from
m to m′, we call a vertex endowed with the scattering matrix (47) a ‘Fourier’ vertex. The
corresponding matrix M represents uniform scattering at the vertex,

Mm′l,lm = ∣∣σ (l)
m′m

∣∣2 = N−1 (48)

and thus the probability to get from (a, b) to (c, d) in t step is

P
(t)

(a,b)→(c,d) = (Mt)(d,c),(b,a) =
{
N−1δbc t = 1
B−1 t > 1.

(49)

It is also useful to have an expression for P̃
(t)

(a,b)→(b,a), the probability to get from (a, b) to
(b, a) following only self-retracing paths. The contribution of each path is N−t and, due to
their special structure, a self-retracing path of 2m+1 or 2m+2 steps will contain m vertices not
including the initial a and b. Each of these m vertices can be freely chosen from the N vertices
of the graph, resulting in Nm different self-retracing paths. Thus, the probability P̃

(t)

(a,b)→(b,a)

takes the form

P̃
(t)

(a,b)→(b,a) = N−1−m with t = 2m or 2m + 1 (50)

i.e., it is indeed decaying exponentially in time.

5.1. Summation of TR3a

Here we calculate the contributions of orbits with the topology of TR3a which obey the
conditions s2 	= s4 and s3 	= f4. We enforce these conditions by multiplying the contribution
of all orbits of this topology by

�TR3a = (
1 − δs2s4

)(
1 − δs3f4

)
. (51)

Thus the contribution of TR3a is

KTR3a(τ ) = 1

2

t2

B

∑
{ti }

δ

[
t −

4∑
i=1

ti

] ∑
α,β

∑
si ,fi


TR3a × PTR3a × �TR3a (52)
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where


TR3a = σ
(α)
s4f3

σ
(β)

s3f2
σ

(α)
s2f1

σ
(β)

s1f4
σ

(α)∗
f3s2

σ
(β)∗
f2f4

σ
(α)∗
s4f1

σ (β)∗
s1s3

(53)

PTR3a = P
(t1−1)

(β,s1)→(f1,α)P
(t2−1)

(α,s2)→(f2,β)P
(t3−1)

(β,s3)→(f3,α)P
(t4−1)

(α,s4)→(f4,β). (54)

If arc 1 is long enough to be ergodic, the sum over s1 simplifies to(
1 − δs3f4

) ∑
s1

σ
(β)

s1f4
σ (β)∗

s1s3
= (

1 − δs3f4

)
δs3f4 = 0. (55)

If arc 2 or arc 3 is ergodic we can carry out a similar sum over f2 or f3 respectively, these
sums also yield the answer zero. Thus we can only get a non-zero contribution when arc 4 is
the only ergodic path. However, we argue in section 6 that we need at least two arcs to be long
(ergodic) since otherwise the contribution can be neglected. Thus the non-zero contribution
discussed above will only give a small correction which will vanish in the limit B → ∞. The
two restrictions 1 	= 2̄ and 1 	= 3 do not change the above argument at all, so we have ignored
them. We conclude that

KTR3a(τ ) = 0. (56)

5.2. Summation of TR3b

Here we calculate the contributions of orbits with the topology of TR3b which obey the
conditions s2 	= f4, s4 	= f2, 1 	= 1̄ and 3 	= 3̄. The first two conditions will be enforced by
means of a factor

�TR3b = (
1 − δs2f4

)(
1 − δs4f2

)
. (57)

The latter two we will enforce below ‘by hand’. Thus

KTR3b(τ ) = 1

2

t2

B

∑
{ti }

δ

[
t −

4∑
i=1

ti

] ∑
α,β

∑
si ,fi


TR3b × PTR3b × �TR3b (58)

where


TR3b = σ
(β)

s4f3
σ

(β)

s3f2
σ

(α)
s2f1

σ
(α)
s1f4

σ
(β)∗
f2f3

σ (β)∗
s3s4

σ
(α)∗
f4f1

σ (α)∗
s1s2

(59)

PTR3b = P
(t1−1)

(α,s1)→(f1,α)P
(t2−1)

(α,s2)→(f2,β)P
(t3−1)

(β,s3)→(f3,β)P
(t4−1)

(β,s4)→(f4,α). (60)

We only need to consider cases where t1 � 3 and t3 � 3 because shorter arcs are purely
self-retracing (1 = 1̄) and so must be excluded. We will treat the restrictions 1 	= 1̄ and 3 	= 3̄
using the following inclusion–exclusion procedure: the sum in (58) with these restrictions is
equal to the sum without the restrictions, minus the sum with 1 = 1̄, minus the sum with
3 = 3̄, plus the sum with both 1 = 1̄ and 3 = 3̄.

The first sum yields zero after the summation over s1 or over s3 in a fashion similar to
equation (55). The second sum we perform with respect to s3 while the third is summed with
respect to s1, in both cases the answer is zero. Thus KTR3b(τ ) is equal to the sum with both
1 = 1̄ and 3 = 3̄, which can be written as

KTR3b(τ ) = 1

2

t2

B3

∑
{ti }

δ

[
t −

4∑
i=1

ti

]
×

∑
α,β

∑
si ,fi

P̃
(t1−1)

(α,s1)→(s1,α)P̃
(t3−1)

(β,s3)→(s3,β) × �TR3b × 
TR3b × δs1,f1δs3,f3 (61)
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where we used the fact that P
(tj −1)

(α,sj )→(fj ,β) = B−1 for j = 2, 4, while P̃
(t)

(a,b)→(b,a) is defined
above equation (50). Upon substitutions f1 = s1 and f3 = s3, and using the symmetry of the
matrices σ , equation (14), 
TR3b becomes


TR3b = ∣∣σ (α)
s1f4

∣∣2∣∣σ (α)
s2s1

∣∣2∣∣σ (β)

s3f2

∣∣2∣∣σ (β)
s4s3

∣∣2 = N−4. (62)

We also note that the probabilities P̃ do not depend on the start and end bonds. Now we can
perform the sum over α, β and all si and fi , which, taking into account various delta-functions,
gives the factor N6(N − 1)2. We get

KTR3b(τ ) = 1

2

t2N2(N − 1)2

B3

∑
{ti }

δ

[
t −

4∑
i=1

ti

]
P̃ (t1−1)P̃ (t3−1) (63)

from which it is clear that the dominant contribution comes from t1 = 3 or 4 and t3 = 3 or 4;
the contributions from other values of t1 and t3 are of order O(N−1). After carrying out the
sum over t2 using the δ-function which forces t4 = t − t2 − n with n = t1 + t3 = 6, 7, 8
we get

KTR3b = 4 × 1

2

t2

B3

t−3−n∑
t2=3

1 = 2
t3

B3
= 2τ 3 (64)

where we have dropped corrections which vanish in the limit B,N → ∞ and the factor 4
comes from the number of possible choices of t1 and t3.

5.3. Summation of TR3c

Here we calculate the contributions of orbits with the topology of TR3c which obey the
following restrictions. First we should only count half the contribution when s2 = f3 or
s1 = f2. Secondly s2 	= s3, 1 	= 1̄, 2 	= 2̄ and 3 	= 3̄. The restrictions which apply to whole
arcs will again be enforced ‘by hand’ using an inclusion–exclusion procedure similar to that
used above, the rest of the restrictions are

�TR3c = (
1 − δs2s3

) (
1 − 1

2δs2f3

) (
1 − 1

2δs1f2

)
. (65)

Thus

KTR3c(τ ) = t2

B

∑
{ti }

δ

[
t −

3∑
i=1

ti

] ∑
α

∑
si ,fi


TR3c × PTR3c × �TR3c (66)

where


TR3c = σ
(α)
s3f2

σ
(α)
s2f1

σ
(α)
s1f3

σ
(α)∗
f2f3

σ
(α)∗
s3f1

σ (α)∗
s1s2

(67)

PTR3c = P
(t1−1)

(α,s1)→(f1,α)P
(t2−1)

(α,s2)→(f2,α)P
(t3−1)

(α,s3)→(f3,α). (68)

The summation here is similar to the sums in TR3b: first we ignore the restriction 1 	= 1̄ (but
enforce the restrictions 2 	= 2̄ and 3 	= 3̄) and carry out the sum over f1 to get(

1 − δs2s3

) ∑
f1

σ
(α)
s2f1

σ
(α)∗
s3f1

= (
1 − δs2s3

)
δs2s3 = 0. (69)

Then we subtract the sum over orbits with 1 = 1̄ (again enforcing the restrictions 2 	= 2̄ and
3 	= 3̄). Similar to TR3b, it turns out that the dominant contribution comes from orbits with
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t1 = 3, 4, i.e. P̃ (t1−1) = N−2. Since t1  t we use the argument from section 6 to note that
we are only interested in orbits where t2, t3 ∼ t and thus both arcs 2 and 3 are ergodic. This
leaves us with

KTR3c(τ ) = −2 × t2

B3N2

∑
t2+t3=t−n

∑
α

∑
si ,fi


TR3c × �TR3c × δs1,f1 (70)

where n = 3, 4. We sum over f1 using equation (14) to get


TR3c = ∣∣σ (α)
s2s1

∣∣2
σ

(α)
s1f3

σ
(α)
s3f2

σ
(α)∗
f2f3

σ (α)∗
s3s1

= N−1σ
(α)
s1f3

σ
(α)
s3f2

σ
(α)∗
f2f3

σ (α)∗
s3s1

(71)

open up the brackets in �TR3c,(
1 − 1

2δs2f3

) (
1 − 1

2δs1f2

) = (
1 − 1

2δs1f2

) − 1
2δs2f3 + 1

4δs2f3δs1f2 (72)

and are now facing the sum∑
α,s1,s2,f2,s3,f3

σ
(α)
s1f3

σ
(α)
s3f2

σ
(α)∗
f2f3

σ (α)∗
s3s1

(
1 − δs2s3

) [(
1 − 1

2
δs1f2

)
− 1

2
δs2f3 +

1

4
δs2f3δs1f2

]
. (73)

Invoking the unitarity of the σ -matrices, it is an easy exercise to show that this sum evaluates
to N2(N − 1)/2 + N(N − 1)/4.

Combining the above information and ignoring subdominant contributions we arrive at

KTR3c(τ ) = −2
t2

B3N3

∑
t2

N2(N − 1)/2 = −τ 3. (74)

5.4. The TR3 result

Remembering that we proved (KNTR3a + KNTR3b) = 0 in section 4.1, we simply need to substitute
the results of the three previous subsections into equation (20) to get

KTR3(τ ) = 2τ 3. (75)

Combining this result with the one in [10] proves that the form factor for the fully connected
Fourier graph coincides with the GOE form factor up to the third order in τ .

6. Estimating the order of a diagram

In this section, we discuss a rule for finding all diagrams which contribute to the nth order in
the small τ expansion of the form factor. The rule is

(number of arcs) − (number of intersections) = (n − 1). (76)

Thus for n = 2, we need only one diagram which is (2, 1) in the format (number of arcs,
number of intersections), and this is the contribution we considered in [10]. Here we are
interested in n = 3, so we must consider both (3, 1) and (4, 2). It is these diagrams that we
show in figure 1.

To get the rule (76) we count powers of B in a diagram’s contribution. Equations (13)
and (16) have a prefactor of B−1 so a τn-contribution to the form factor must get B−(n−1)

from the summation over the orbits. In the ergodic limit, according to equation (9), each
arc will contribute the weight B−1, while each intersection contributes the weight B, thus we
have equation (76). The origin of the factor of B associated with each intersection can be
explained as follows. First of all, the set of all vertices {vj } adjacent to an intersection point
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γ can be split into two equal subsets satisfying the following property: if there is a transition
(vj , γ ) → (γ, vm) in either P or Q then vj and vm belong to different subsets8. This is
particularly simple for the NTR3 diagrams where the two sets are simply {si} and {fi}. If we
now do the summation over all vertices in one subset and invoke the unitarity of the scattering
matrix at the vertex γ , the result will be a product of δ-functions δu1u2δu2u3 · · · δuku1 where uk

are the vertices from the second subset, ordered in an appropriate way. Now the summation
over u2, . . . , uk will give 1 while the summation over u1 and γ will give the sought-after factor
of B, since the only restriction on u1 and γ is that they have to be the two ends of the same
bond.

To make this recipe work for the diagonal term (∼τ 1), the corresponding diagram being
just a looping arc, we need one extra ingredient, the starting vertex for the loop. The position
of the vertex is not determined, it can be placed anywhere on the looping arc, unlike the
intersection points in other diagrams. To compensate for this ambiguity when we sum over
all periodic orbits fitting such diagram, we divide the sum by the number of vertices in the
loop, t.

Now we discuss why counting of powers of t does not work for obtaining equation (76).
Let us estimate the order of t for a given diagram. Firstly, there is t2 in the prefactor of
equation (13) or (16). Secondly, for a diagram with a arcs, the lengths ti of arcs satisfy∑

i ti = t thus the sum over all possible ti gives a factor proportional to ta−1. Then of the
diagrams in figure 1, NTR3b and TR3c appear to have four powers of t while the rest have five.
Similarly, the diagram we evaluated in [10] gets three powers of t. The leading contributions
to all the diagrams appear to have at least one more power of t than they should9. However,
we show in [10] and the present paper that the numerical coefficient of this ‘out of order’ term
is zero—at least for diagrams contributing up to third order in τ .

The arguments given above in favour of equation (76) are certainly too vague to be
considered a proof. In particular, we cannot presently check our assumption that terms
giving incorrectly large powers in t disappear also for more complicated diagrams. However,
summing rigorously the contributions of all the diagrams obtained from this set of rules we
show a posteriori that we indeed get an expansion which depends only on the scaled time τ .
We also take confidence in our method from the fact that our rule generates the same diagrams
that were used in perturbative calculations of the form factor for disordered systems with the
nonlinear sigma model [12].

Nevertheless, counting powers of t is very useful in the following situation: if for some
reason the lengths of some arcs are forced to be fixed, the estimated power of t can drop low
enough that we can safely ignore the contribution of such a diagram in the B → ∞ limit
without actually evaluating it. In particular, we see that to get a non-vanishing contribution of
order τ 3, at least two arcs in any diagram must have unrestricted lengths. Note that this does
not mean that there is no contribution from orbit pairs where the maximum length of all arcs is
restricted. For any given B and t there are orbit pairs with so many self-intersections that the
maximum arc length is less than the time required for ergodicity. Then the method discussed
in this paper must fail, this may explain why the power series expansion in τ breaks down at
τ = 1 for NTR (and at τ = 1/2 for TR) despite the fact that the PO sums equations (13), (16)
are exact.

8 In other words the graph built on vertices vj , connected if there is a transition (vj , γ ) → (γ, vm), is bipartite. This
graph is nothing else but the structure drawn inside the circles in figure 1. The graph is bipartite since it is 2-regular
(the valency of each vertex is 2) and each connected component contains an even number of bonds.
9 This, however, is not the case for the ‘diagonal’ diagram where the power of t is right, which explains why advancing
beyond the diagonal approximation was (and still is) so hard.
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7. Conclusions

At first sight, the achievements of the present paper may appear moderate. What is the point
in going from second to third order in a series which is infinite, in particular if this step
becomes possible only by restricting the range of systems considered to very special models?
But we believe that such a point of view is too short-sighted. Semiclassical theories are
obviously indispensable for a complete understanding of spectral statistics in systems with
chaotic classical dynamics. As they are not based on a random matrix conjecture, such theories
have the potential to account for important system-specific corrections which one can hope
to extract once the emergence of universality within semiclassics is fully understood. On the
other hand, the restriction to the diagonal approximation has so far severely limited the success
of the semiclassical approach.

Going beyond the diagonal approximation in semiclassical PO theories is possible, as
demonstrated by Sieber and Richter [1, 2]. But when more than a first-order correction is
required, one will inevitably encounter the problems discussed in this paper. For example, one
needs methods to select diagrams contributing at a given order, and we suggested a solution in
section 6. It will be necessary to account for the ambiguity introduced by the representation
of the form factor in terms of diagrams, and we have solved this problem at least in quantum
graphs for the diagrams which contribute up to third order (section 3.3). It is important to note
that a variety of orbits give the relevant contributions, and our calculations in section 5 indicate
that the generalization of the leading-order correction to higher orders cannot be achieved by
considering a single type of diagram only.

Here the third-order result for TR systems is limited to a class of uniformly hyperbolic
quantum graphs. However, we have no reason to believe that any conclusion will be
substantially changed when the calculation is done for a more generic model as, e.g., in
[16]. While going further than third order for TR systems is beyond us at the moment, the
prospects for doing this in NTR systems are more promising. We hope that the method
presented in section 4.2 will prove applicable there.
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